This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674
Synthesis, characterization and antineoplastic activity of 5-chloro-2,3dihydroxypyridine transition metal complexes
Sahar I. Mostafa ${ }^{a}$
${ }^{\text {a }}$ Faculty of Science, Chemistry Department, Mansoura University, Mansoura, Egypt

To cite this Article Mostafa, Sahar I.(2008) 'Synthesis, characterization and antineoplastic activity of 5-chloro-2,3dihydroxypyridine transition metal complexes', Journal of Coordination Chemistry, 61: 10, 1553-1567
To link to this Article: DOI: 10.1080/00958970701598977
URL: http://dx.doi.org/10.1080/00958970701598977

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


Synthesis, characterization and antineoplastic activity of 5-chloro-2,3-dihydroxypyridine transition metal complexes

SAHAR I. MOSTAFA*
Faculty of Science, Chemistry Department, Mansoura University, Mansoura, Egypt

(Received 27 February 2007; in final form 27 April 2007)

Abstract

Synthetic procedures are described that allow access to cis- $\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{cdhp})_{2}\right]^{2-}$, cis- $\left[\mathrm{W}_{2} \mathrm{O}_{5}(\mathrm{Hcdhp})_{2}\right]$, trans- $\left[\mathrm{OsO}_{2}(\mathrm{cdhp})_{2}\right]^{2-}$, trans- $\left[\mathrm{UO}_{2}(\mathrm{Hcdhp})_{2}\right], \quad\left[\mathrm{ReO}\left(\mathrm{PPh}_{3}\right)(\mathrm{Hcdhp})_{2}\right] \mathrm{X}$ $(\mathrm{X}=\mathrm{Cl}, \mathrm{I}), \quad\left[\mathrm{ReO}_{2}(\mathrm{cdhp})_{2}\right]^{-}, \quad\left[\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{cdhp})\right], \quad[\mathrm{M}(\mathrm{bpy})(\mathrm{cdhp})] \quad(\mathrm{M}(\mathrm{II})=\mathrm{Pd}, \quad \mathrm{Pt})$, $\left[\mathrm{Ru}\left(\mathrm{YPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right] \quad(\mathrm{Y}=\mathrm{P}, \mathrm{As}), \quad\left[\mathrm{Rh}(\mathrm{Hcdhp})_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right], \quad\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right] \mathrm{ClO}_{4}$ and $\left[\operatorname{Ir}(\mathrm{bpy})(\mathrm{cdhp}) \mathrm{Cl}_{2}\right]$, where Hcdhp, cdhp are the deprotonated monoanion of 5-chloro-3-hydroxypyrid-2-one and dianion of 5-chloro-2,3-dihydroxypyridine, respectively. These complexes were characterized by their Raman, IR, ${ }^{1} \mathrm{H}$ NMR, electronic and mass spectra, conductivity, magnetic and thermal measurements. $\mathrm{H}_{2} \mathrm{cdhp}$, cis $-\mathrm{K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{cdhp})_{2}\right]$, $[\operatorname{Pd}(\mathrm{bpy})(\mathrm{cdhp})]$ display a significant antineoplastic activity against Ehrlich ascites tumor cells (EAC).

Keywords: H_{2} cdhp; Complexes; Spectra; EAC; Antineoplastic

1. Introduction

This report is a continuation of our research program on coordination chemistry of hydroxypyridines, reporting earlier on transition metal complexes of 1,2-dimethyl-3-hydroxy-4-pyridinone [1] and 2-amino-3-hydroxypyridine [2]. Hydroxypyridines have attracted interest in areas such as pesticide design [3-5], therapeutics, pharmacology [6-8] and as analytical reagents [9]. 2-Hydroxypyridines exist in different hydroxy-ketone forms [10]; in the solid state, 2- and 4-hydroxypyridines are predominantly in the pyridone form [11]. Hydroxypyridine, 2,3-dihydroxypyridine and substituted 2,3-hydroxylpyridines have two hydroxy groups in the ortho position relative to each other, and can undergo tautomerization with 2-pyridones scheme 1. The deprotonation constant $\left(\mathrm{pK}_{\mathrm{a}}\right)$ of 2,3-dihydroxypyridine is 10.98 while that of 3-hydroxypyridine is 8.72 from involvement of the 3-hydroxy proton in a strong H -bond with the neighboring 2-carbonyl oxygen [12]. They have several coordination sites and can easily form cationic, anionic or neutral complexes, although relatively few 2,3-dihydroxypyridine complexes have been reported [12-15]. Iron(III) complexes of polydentate ligands containing the 2,3-dihydroxypyridine moiety are known [16, 17].

[^0]

A
Dihydroxyform

B
2-Keto form

Scheme 1. 2,3-Dihydroxypyridine.
Dinydroxyform

B 2-Keto form

Scheme 2. 5-Chloro-2,3-dihydroxypyridine.

The X-ray crystal structure of $\mathrm{Fe}(\mathrm{HL})_{3}[18]$ and $\mathrm{Al}(\mathrm{HL})_{3}[13]$ are the only reports in the literature.

In this report the coordination chemistry of 5-chloro-2,3-dihydroxypyridine $\left(\mathrm{H}_{2} \mathrm{cdhp}\right.$, scheme $2(\mathrm{~A}) ; 2 \mathrm{H}$ are the dissociable hydroxy protons) with some second and third row transition elements are explored. These complexes have been further characterized on the basis of spectral (Raman, IR, ${ }^{1} \mathrm{H}$ NMR, electronic and mass), conductivity, magnetic and thermal measurements. In addition, we report the antineoplastic activity of $\mathrm{H}_{2} \mathrm{cdhp}$, cis $-\mathrm{K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{cdhp})_{2}\right],[\mathrm{M}(\mathrm{bpy})(\mathrm{cdhp})]$ and $\left[\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{cdhp})\right](\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ against Ehrlich ascites tumor cells (EAC).

2. Experimental

2.1. Materials and methods

All manipulations were performed under aerobic conditions using 5-chloro-2,3-dihydroxypyridine and all other reagents (Merck) used as received. Trans $-\mathrm{K}_{2}\left[\mathrm{OsO}_{2}(\mathrm{OH})_{4}\right]$ [19], $\left[\mathrm{ReO}_{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{I}\right][20],\left[\mathrm{ReO}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{3}\right][21],\left[\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ [22, 23], [M(bpy) $\left.\mathrm{Cl}_{2}\right]$ $(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ [24], $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}_{2}\right]$ [25,26] and $\left[\mathrm{Ru}\left(\mathrm{AsPh}_{3}\right)_{2} \mathrm{Cl}_{3} \mathrm{MeOH}\right]$ [26] were synthesized by literature methods.

Caution! Perchlorate salts of metal complexes are potentially explosive. Only small amounts of materials should be prepared, and they should be handled with caution.

The cells of Ehrlich ascites (EAC) tumor were obtained from the National Cancer Institute, Cairo, Egypt. After harvesting and preparation of the cells, their total number and viability were determined by counting using Trypan blue [27].

2.2. Instrumentation

Microanalyses were determined by the Micro Analytical Unit of Cairo University. Magnetic moments at $25^{\circ} \mathrm{C}$ were recorded using a Johnson Matthey magnetic susceptibility balance with $\mathrm{Hg}\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]$ as calibrant. Electronic spectra were recorded using a Unicam UV_{2-100} UV-vis spectrometer. IR spectra were measured as KBr discs on a Matson 5000 FT-IR spectrometer. Raman spectra were recorded as spun discs on a KBr matrix. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a Varian Gemini WM-200 spectrometer (Laser Centre, Cairo University). Thermal analysis measurements were made in the $20-800^{\circ} \mathrm{C}$ range at a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$, using $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ as a reference, on a Shimadzu Thermogravimetric Analyzer TGA-50. Conductometric measurements were carried out at room temperature on a YSI Model 32 conductivity bridge. Mass spectra were recorded on a Matson MS 5988 spectrometer.

2.3. Synthesis of complexes

2.3.1. Cis- $\mathrm{K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathbf{c d h p})_{2}\right] \cdot \mathbf{2 H}_{2} \mathrm{O}$ (1). An aqueous solution $\left(5 \mathrm{~cm}^{3}\right)$ of potassium molybdate $(0.23 \mathrm{~g}, 1 \mathrm{mmol})$ was added to an ethanolic solution $\left(15 \mathrm{~cm}^{3}\right)$ of $\mathrm{H}_{2} \mathrm{cdhp}$ $(0.146 \mathrm{~g}, 1 \mathrm{mmol})$. The resulting yellow-orange precipitate was filtered off, washed with ethanol and diethyl ether and dried in vacuo. Conductivity data ($10^{-3} \mathrm{M}$ in DMF): $\Lambda_{\mathrm{M}}=153.0 \mathrm{Ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
2.3.2. Cis $-\mathrm{Y}_{2}\left[\mathrm{Mo}_{2} \mathbf{O}_{5}(\mathbf{c d h p})_{2}\right] \quad\left(\mathrm{Y}=\mathbf{P P h}_{4}\right.$ (2), ${ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathbf{N}$ (3)). Ammonium molybdate, $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{MoO}_{4}\right],(0.24 \mathrm{~g}, 1 \mathrm{mmol})$ in water $\left(3 \mathrm{~cm}^{3}\right)$ was added to $\mathrm{H}_{2} \mathrm{cdhp}(0.146 \mathrm{~g}$, 1 mmol) in water $\left(30 \mathrm{~cm}^{3}\right)$. The resulting yellow-orange solution was filtered and an aqueous solution $\left(10 \mathrm{~cm}^{3}\right)$ of $\mathrm{PPh}_{4} \mathrm{Cl}(0.76 \mathrm{~g}, 2 \mathrm{mmol})$ or ${ }^{n} \mathrm{Bu}_{4} \mathrm{NCl}(0.56 \mathrm{~g}, 2 \mathrm{mmol})$ was added to the filtrate. The yellow $\left(\mathrm{PPh}_{4}{ }^{+}\right)$or beige $\left({ }^{n} \mathrm{Bu}_{4} \mathrm{~N}^{+}\right)$precipitate was filtered off, washed with water and air-dried. Conductivity data ($10^{-3} \mathrm{M}$ in ethanol): $\Lambda_{\mathrm{M}}=46.0$ for (2) and 54.0 for (3) $\mathrm{Ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
2.3.3. $\mathbf{C i s}$ - $\left[\mathrm{W}_{\mathbf{2}} \mathrm{O}_{\mathbf{5}}(\mathbf{H c d h p})_{2}\right] \cdot \mathbf{4 H}_{\mathbf{2}} \mathrm{O}$ (4). A solution of $\mathrm{Na}_{2}\left[\mathrm{WO}_{4}\right](0.33 \mathrm{~g}, 1 \mathrm{mmol})$ in water $\left(5 \mathrm{~cm}^{3}\right)$ was added to $\mathrm{H}_{2} \mathrm{cdhp}(0.146 \mathrm{~g}, 1 \mathrm{mmol})$ in ethanol $\left(15 \mathrm{~cm}^{3}\right)$. The pale, green-brown precipitate was filtered off, washed with ethanol and diethyl ether and dried in vacuo. Conductivity data ($10^{-3} \mathrm{M}$ in DMSO): $\Lambda_{\mathrm{M}}=4.0 \mathrm{Ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
2.3.4. Trans- $\mathrm{K}_{2}\left[\mathrm{OsO}_{\mathbf{2}}(\mathbf{c d h p})_{2}\right] \mathbf{(5)} . \mathrm{K}_{2}\left[\mathrm{OsO}_{2}(\mathrm{OH})_{4}\right](0.1 \mathrm{~g}, 0.25 \mathrm{mmol})$ in water $\left(2 \mathrm{~cm}^{3}\right)$ was filtered into a solution of $\mathrm{H}_{2} \mathrm{cdhp}(0.073 \mathrm{~g}, 0.5 \mathrm{mmol})$ in ethanol $\left(10 \mathrm{~cm}^{3}\right)$ with stirring. The resulting brown solution was left to stand for 2 h , during this time a brown complex formed. It was filtered off, washed with ethanol and diethyl ether and dried in vacuo. Conductivity data ($10^{-3} \mathrm{M}$ in DMF): $\Lambda_{\mathrm{M}}=148.0 \mathrm{Ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
2.3.5. Trans-[$\left.\mathrm{UO}_{\mathbf{2}}(\mathbf{H c d h p})_{2}\right] \cdot \mathbf{H}_{\mathbf{2}} \mathrm{O}$ (6). Trans- $\left[\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{~g}, 0.5 \mathrm{mmol})$ in methanol $\left(10 \mathrm{~cm}^{3}\right)$ was added to $\mathrm{H}_{2} \mathrm{cdhp}(0.146 \mathrm{~g}, 1 \mathrm{mmol})$ in methanol $\left(20 \mathrm{~cm}^{3}\right)$. The red mixture was refluxed for 2 h on a steam bath. Upon reducing the volume followed by cooling, a red-brown complex separated out. It was washed with ice-cold methanol and dried in vacuo. Conductivity data ($10^{-3} \mathrm{M}$ in DMSO): $\Lambda_{\mathrm{M}}=5.0 \mathrm{Ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
2.3.6. $\left[\mathbf{R e O}\left(\mathbf{P P h}_{3}\right)(\mathbf{H c d h p})_{2}\right] \mathbf{C l}(\mathbf{7})$. To a stirred suspension of $\left[\mathrm{ReO}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{3}\right](0.15 \mathrm{~g}$, $0.18 \mathrm{mmol})$ in ethanol $\left(30 \mathrm{~cm}^{3}\right)$ was added $\mathrm{H}_{2} \mathrm{cdhp}(0.053 \mathrm{~g}, 0.36 \mathrm{mmol})$. The resulting suspension was warmed and stirred under reflux for 3 h . Pale green microcrystals were isolated, washed with ethanol and dried in vacuo. Conductivity data $\left(10^{-3} \mathrm{M}\right.$ in DMSO): $\Lambda_{\mathrm{M}}=64.0 \mathrm{Ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
2.3.7. $\left[\mathbf{R e O}\left(\mathbf{P P h}_{3}\right)(\mathbf{H c d h p})_{2}\right] \mathbf{I}(\mathbf{8})$. This complex was prepared in a similar fashion to $\left[\mathrm{ReO}\left(\mathrm{PPh}_{3}\right)(\mathrm{cdhp})_{2}\right] \mathrm{Cl}$ but with $\left[\mathrm{ReO}_{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{I}\right]$ in place of $\left[\mathrm{ReO}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{3}\right]$ and using methanol as a solvent. Conductivity data $\left(10^{-3} \mathrm{M}\right.$ in DMSO): $\Lambda_{\mathrm{M}}=49.0 \mathrm{Ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
2.3.8. $\left.\left(\mathbf{P P h}_{4}\right)\left[\mathrm{ReO}_{\mathbf{2}} \mathbf{(c d h p}\right)_{2}\right]$ (9). To a stirred suspension of $\left[\mathrm{ReO}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{3}\right](0.17 \mathrm{~g}$, $0.2 \mathrm{mmol})$ in ethanol $\left(10 \mathrm{~cm}^{3}\right)$ was added $\mathrm{H}_{2} \mathrm{cdhp}(0.073 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(0.1 \mathrm{~cm}^{3}\right.$, $0.07 \mathrm{mmol})$. The resulting green suspension was stirred under reflux for 4 h and a brown solution obtained. $\mathrm{PPh}_{4} \mathrm{Cl}(0.075 \mathrm{~g}, 0.2 \mathrm{mmol})$ in ethanol $\left(5 \mathrm{~cm}^{3}\right)$ was added to the cold reaction mixture. Over 60 h refrigeration, a brown complex was obtained, filtered off, washed with ice-cold water and air-dried. Conductivity data ($10^{-3} \mathrm{M}$ in DMSO): $\Lambda_{\mathrm{M}}=28.0 \mathrm{Ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
2.3.9. $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{\mathbf{2}}(\mathbf{c d h p})\right]$ (10) and $[\mathbf{P t}(\mathbf{b p y})(\mathbf{c d h p})]$ (11). To a stirred suspension of $\mathrm{H}_{2} \mathrm{cdhp}(0.146 \mathrm{~g}, 1 \mathrm{mmol})$ in methanol-benzene $(3: 2, \mathrm{~V} / \mathrm{V})\left(30 \mathrm{~cm}^{3}\right)$ was added a methanolic solution of $\mathrm{KOH}(0.11 \mathrm{~g}, 2 \mathrm{mmol})$ and $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ or $\left[\mathrm{Pt}(\mathrm{bpy}) \mathrm{Cl}_{2}\right]$ (1 mmol). The resulting suspension was stirred overnight and yellow and pale yellow complexes were obtained, respectively. These were filtered off, washed with water and methanol and air-dried. Conductivity data ($10^{-3} \mathrm{M}$ in DMSO): $\Lambda_{\mathrm{M}}=4.0$ for (10) and 2.0 for (11) $\mathrm{Ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
2.3.10. $\left[\mathbf{P d}\left(\mathbf{P P h}_{3}\right)_{2}(\mathbf{c d h p})\right]$ (12) and $[\mathbf{P d}(\mathbf{b p y})(\mathbf{c d h p})]$ (13). A similar procedure as for the platinum analogue was applied, $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ and $\left[\mathrm{Pd}(\mathrm{bpy}) \mathrm{Cl}_{2}\right]$ replacing their $\mathrm{Pt}(\mathrm{II})$ analogues to produce a deep-beige and brown precipitate, respectively. Conductivity data ($10^{-3} \mathrm{M}$ in DMSO): $\Lambda_{\mathrm{M}}=6.0$ for (12) and 7.0 for (13) $\mathrm{Ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
2.3.11. $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{H c d h p})_{2}\right]$ (14) and $\left[\operatorname{Ru}\left(\mathrm{AsPh}_{3}\right)_{2}(\mathbf{H c d h p})_{2}\right]$ (15). The complex $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}_{2}\right](0.25 \mathrm{~g}, 0.25 \mathrm{mmol})$ or $\left[\mathrm{Ru}\left(\mathrm{AsPh}_{3}\right)_{2} \mathrm{Cl}_{3}(\mathrm{MeOH})\right](0.21 \mathrm{~g}, 0.25 \mathrm{mmol})$ was added to methanolic solutions of $\mathrm{H}_{2} \mathrm{cdhp}(0.058 \mathrm{~g}, 0.4 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(0.05 \mathrm{~cm}^{3}\right.$, 0.03 mmol) was added to the reaction mixture. The reaction mixture was refluxed for 2 h during which shiny green microcrystals $\left(\mathrm{PPh}_{3}\right)$ or deep green $\left(\mathrm{AsPh}_{3}\right)$ product was isolated, washed with methanol and diethyl ether and dried in vacuo. Conductivity data ($10^{-3} \mathrm{M}$ in DMSO): $\Lambda_{\mathrm{M}}=4.0$ for (14) and 5.0 for (15) $\mathrm{Ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
2.3.12. $\left[\mathbf{R h}(\mathbf{H c d h p})_{2} \mathbf{C l}\left(\mathbf{H}_{2} \mathrm{O}\right)\right] \cdot \mathbf{H}_{2} \mathrm{O}$ (16). Hydrated rhodium trichloride $(0.12 \mathrm{~g}$, $0.45 \mathrm{mmol})$ was added to a solution of $\mathrm{AcONa}(0.62 \mathrm{~g}, 7.5 \mathrm{mmol})$ in water $\left(30 \mathrm{~cm}^{3}\right)$ and heated gently with stirring under reflux while $\mathrm{H}_{2} \mathrm{cdhp}(0.22 \mathrm{~g}, 1.5 \mathrm{mmol})$ was added. The mixture was refluxed for 6 h and a yellow-beige precipitate formed, which was removed while hot, washed with hot water and air-dried. Conductivity data $\left(10^{-3} \mathrm{M}\right.$ in DMSO): $\Lambda_{\mathrm{M}}=6.0 \mathrm{Ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
2.3.13. $\left[\mathbf{R h}\left(\mathbf{P P h}_{3}\right)_{\mathbf{2}}(\mathbf{H c d h p})_{2}\right] \mathbf{C l O}_{4}$ (17). A hot ethanolic solution ($15 \mathrm{~cm}^{3}$) of $\mathrm{H}_{2} \mathrm{cdhp}$ $(0.12 \mathrm{~g}, 0.8 \mathrm{mmol})$ was added to a solution of $\mathrm{HClO}_{4}\left(3 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ in water $\left(10 \mathrm{~cm}^{3}\right)$ containing $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.104 \mathrm{~g}, 0.4 \mathrm{mmol})$. The resulting solution was kept under reflux for 3 h and $\mathrm{PPh}_{3}(0.22 \mathrm{~g}, 0.82 \mathrm{mmol})$ in hot ethanol $\left(10 \mathrm{~cm}^{3}\right)$ was added to the reaction mixture. After 1.5 h of continuing reflux, a red-brown product was isolated, filtered off while hot, washed with hot water, hot ethanol and dried in vacuo. Conductivity data ($10^{-3} \mathrm{M}$ in DMSO): $\Lambda_{\mathrm{M}}=154.0 \mathrm{Ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
2.3.14. $\left[\operatorname{Ir}(\mathbf{b p y})(\mathbf{c d h p}) \mathrm{Cl}_{2}\right] \cdot \mathbf{2 \mathbf { H } _ { 2 } \mathrm { O } \text { (18). } \quad \text { To } \mathrm { Na } _ { 2 } [\mathrm { IrCl } _ { 6 }] (0 . 1 1 3 \mathrm { g } , 0 . 2 5 \mathrm { mmol }) \text { in water }}$ $\left(5 \mathrm{~cm}^{3}\right)$ was added a solution of $\mathrm{H}_{2} \mathrm{cdhp}(0.11 \mathrm{~g}, 0.75 \mathrm{mmol})$ and $\mathrm{KOH}(0.084 \mathrm{~g}$, $1.5 \mathrm{mmol})$ in water $\left(15 \mathrm{~cm}^{3}\right)$. The brown solution was kept under reflux for 2 h , then 2, 2^{\prime}-bipyridine $(0.156 \mathrm{~g}, 1 \mathrm{mmol})$ in hot ethanol $\left(10 \mathrm{~cm}^{3}\right)$ was added. The reaction mixture was refluxed for an additional 4 h and the shiny brown precipitate washed with hot water and hot ethanol and dried in vacuo. Conductivity data ($10^{-3} \mathrm{M}$ in DMSO): $\Lambda_{\mathrm{M}}=8.0 \mathrm{Ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.

2.4. Antineoplastic activity against Ehrlich ascites carcinoma in mice

Ehrlich ascites tumor cells (EAC) $\left(2 \times 10^{6}\right.$ cells/mice) were implanted intrapritonial (i.p.). The tumor-bearing mice were divided into three groups; standard received the 5-florouracil ($5-\mathrm{fu}$) for comparison, the second received $\mathrm{H}_{2} \mathrm{cdhp}$ and its complexes and the third group is the control one (does not receive any treatment). Each group consists of seven mice. All the compounds were screened for their antitumor activity by dissolving samples in minimum amount of water, DMF or DMSO and diluting with phosphate buffered saline (PBS; $\mathrm{pH}=7.2$). $\mathrm{H}_{2} \mathrm{cdhp}$ and cis- $\mathrm{K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{cdhp})_{2}\right]$, $[\mathrm{M}(\mathrm{bpy})(\mathrm{cdhp})]$ and $\left[\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{cdhp})\right](\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ complexes were injected (100 ppm solution) daily i.p. from the second day of incubation. The control group was treated with the same volume of 0.9% sodium chloride solution while the standard one by 5 -florouracil (5-fu) [28]. All the treatments started 24 h after inoculation for 45 days.

3. Results and discussion

3.1. Synthesis of complexes

Hydroxypyridines undergo tautomerization with pyridones with equilibrium favoring the pyridine isomer for 2 - and 4 -hydroxypyridines [29]. This may make the electronwithdrawing effect of the oxygen more pronounced in the coordinated ligand and thus
further stabilize back-bonding [11]. In basic solution, this tautomerization is less favorable [11].

The Experimental Section lists new complexes of 5-chloro-2,3-dihydroxypyridine. Elemental analyses table 1 of the isolated complexes agree with the assigned formula. The oxo-molybdenum complexes cis- $\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{cdhp})_{2}\right]^{2-}$ were prepared by reaction of H_{2} cdhp with $\left[\mathrm{MoO}_{4}\right]^{2-}$; similar reaction using trans $-\mathrm{K}_{2}\left[\mathrm{OsO}_{2}(\mathrm{OH})_{4}\right]$ gave $\mathrm{K}_{2}\left[\mathrm{OsO}_{2}(\mathrm{cdhp})_{2}\right]$, while using $\mathrm{Na}_{2}\left[\mathrm{WO}_{4}\right]$ produced cis- $\left[\mathrm{W}_{2} \mathrm{O}_{5}(\mathrm{Hcdhp})_{2}\right]$. Trans$\left[\mathrm{UO}_{2}(\mathrm{Hcdhp})_{2}\right]$ was obtained by the reaction of uranyl nitrate and $\mathrm{H}_{2} \mathrm{cdhp}$ in methanol. The $\left[\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{cdhp})\right]$ and $[\mathrm{M}(\mathrm{bpy})(\mathrm{cdhp})](\mathrm{M}=\mathrm{Pd}$, Pt$)$ were made from $\left[\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ and $\left[\mathrm{M}(\mathrm{bpy}) \mathrm{Cl}_{2}\right]$ and H_{2} cdhp in benzene-methanol in the presence of aqueous base. The complexes $\left[\mathrm{ReO}\left(\mathrm{PPh}_{3}\right)(\mathrm{Hcdhp})_{2}\right] \mathrm{X} \quad(\mathrm{X}=\mathrm{Cl}, \mathrm{I})$ were made from $\mathrm{H}_{2} \mathrm{cdhp}$ and $\left[\mathrm{ReO}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{3}\right]$ or $\left[\mathrm{ReO}_{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{I}\right]$ in ethanol or methanol, respectively, while $\left[\mathrm{ReO}_{2}(\mathrm{cdhp})_{2}\right]^{-}$was made from $\left[\mathrm{ReO}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{3}\right]$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ in ethanol. The ruthenium complexes were made from $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}_{2}\right]$ or $\left[\mathrm{Ru}\left(\mathrm{AsPh}_{3}\right)_{2} \mathrm{Cl}_{3} \mathrm{MeOH}\right]$ and $\mathrm{H}_{2} \mathrm{cdhp}$ in basic methanol to yield $\left[\mathrm{Ru}\left(\mathrm{YPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right] \quad(\mathrm{Y}=\mathrm{P}$ or As). [$\left.\mathrm{Rh}(\mathrm{Hcdhp})_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ was obtained from $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{cdhp}$ under aqueous basic conditions. $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right] \mathrm{ClO}_{4}$ was prepared by the reaction of hydrated RhCl_{3} with $\mathrm{H}_{2} \mathrm{cdhp}$ in the presence of PPh_{3} and HClO_{4} in ethanol. Finally, the complex $\left[\operatorname{Ir}(\mathrm{bpy})(\mathrm{cdhp}) \mathrm{Cl}_{2}\right]$ was obtained by refluxing $\mathrm{Na}_{2}\left[\mathrm{IrCl}_{6}\right]$ and the ligand in aqueous base in the presence of bpy. The sequence of reagent addition in most procedures is critical.

The complexes are microcrystalline or powder-like, stable in normal laboratory atmosphere and soluble in water (Mo, Os), DMF and DMSO. I had hoped to structurally characterize one of the complexes by single X-ray crystallography, but was thwarted on numerous occasions by very small crystal dimensions. Thus, the characterizations of the complexes were based on physical and spectroscopic techniques.

3.2. Vibration spectra

The characteristic Raman and IR bands observed and vibration assignments of 5-chloro-2,3-dihydroxypyridine ($\mathrm{H}_{2} \mathrm{cdhp}$) and its reported complexes are detailed in table 1. The IR spectra of some dihydroxypyridines show their existence in different hydroxy-ketone forms [1] scheme 1. In the solid state, $\mathrm{H}_{2} \mathrm{cdhp}$ is predominantly in the pyridone form (form B, scheme 2) [10]. There are characteristic vibration bands of $\nu(\mathrm{NH})$ and $\nu(\mathrm{C}=\mathrm{O})$ at 3240 and $1675 \mathrm{~cm}^{-1}$, respectively [10, 11], and the in-plane $\beta(\mathrm{NH})$ band at $1603 \mathrm{~cm}^{-1}$. The broad $\nu(\mathrm{OH})$ absorption at $3265 \mathrm{~cm}^{-1}$ arises from strong intra and intermolecular hydrogen-bonding of the free ligand [11, 30].

In spectra of $\left[\mathrm{W}_{2} \mathrm{O}_{5}(\mathrm{Hcdhp})_{2}\right], \quad\left[\mathrm{UO}_{2}(\mathrm{Hcdhp})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, $\quad\left[\mathrm{Rh}(\mathrm{Hcdhp})_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right] \mathrm{ClO}_{4}, \quad\left[\mathrm{ReO}\left(\mathrm{PPh}_{3}\right)(\mathrm{Hcdhp})_{2}\right] \mathrm{Cl}, \quad\left[\mathrm{ReO}\left(\mathrm{PPh}_{3}\right)(\mathrm{Hcdhp})_{2}\right] \mathrm{I}$, $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right]$ and $\left[\mathrm{Ru}\left(\mathrm{AsPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right]$ the stretching vibration $\nu(\mathrm{OH})$ in the free ligand is missing. The band at $1675 \mathrm{~cm}^{-1}$ arising from $\nu(\mathrm{C}=\mathrm{O})$ in the free ligand shifts to lower wave number upon complexation. The stretching vibration $\nu(\mathrm{NH})$ in the free ligand remains more or less in the same position in the complexes [11]. The bands at 1613 and $1566 \mathrm{~cm}^{-1}$, mixed $\nu(\mathrm{C}=\mathrm{C})$ and $\nu(\mathrm{C}=\mathrm{N})$ modes, also shift to lower wave numbers in the complexes [1, 31]. The band near $1240 \mathrm{~cm}^{-1}$ in both ligand and complexes is probably due to $v(\mathrm{C}-\mathrm{O})$. Thus $\mathrm{H}_{2} \mathrm{cdhp}$ is a mononegative bidentate chelate through the ketonic oxygen and the ortho hydroxy group (form B, scheme 2); similar
Table 1. Analysis and spectral data of $\mathrm{H}_{2} \mathrm{cdhp}$ complexes.

	Elemental analysis (Calcd)					IR Spectral data					
	C	H	N	Cl	K	$v(\mathrm{NH}) \nu(\mathrm{C}=\mathrm{O})$	$v^{\mathrm{s}}(\mathrm{C}=\mathrm{C}) v^{\mathrm{s}}(\mathrm{C}-\mathrm{N})$	$\nu^{\mathrm{s}}(\mathrm{C}-\mathrm{C})$	$\nu^{s}(\mathrm{C}-\mathrm{O})$	$\nu_{s}(\mathrm{M}-\mathrm{O}) \vee$	$v_{\text {as }}(\mathrm{M}-\mathrm{O})^{\text {a }}$
Cis- $\mathrm{K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{cdhp})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	17.77	1.34	4.08	10.67	11.56	-		1456	1240	910	874
	(17.83)	(1.19)	(4.16)	(10.55)	(11.60)					907	884
Cis-($\left.\mathrm{PPh}_{4}\right)_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{cdhp})_{2}\right]$	56.41	3.51	2.20	5.68		-		1440	1247	928	894
	(56.27)	(3.56)	(2.26)	(5.74)						909	881
Cis- $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{cdhp})_{2}\right]$	48.20	7.43	5.26	6.78		-		1447	1190	905	860
	(48.33)	(7.29)	(5.37)	(6.81)						903	876
Cis-[$\left.\mathrm{W}_{2} \mathrm{O}_{5}(\mathrm{Hcdhp})_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$	14.62	1.90	3.42	8.70		3221	1605		1255	912	880
	(14.84)	(1.73)	(3.46)	(8.78)		1654	1550			919	894
Trans - $\mathrm{K}_{2}\left[\mathrm{OsO}_{2}(\mathrm{cdhp})_{2}\right]$	19.80	0.89	4.55	11.82	12.85	-		1445	1260		840
	(19.82)	(1.00)	(4.63)	(11.73)	(12.92)					865	
Trans-[$\left.\mathrm{UO}_{2}(\mathrm{Hcdhp})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	21.70	1.11	4.90	12.66		3231	1605		1264		912
	(21.47)	(1.07)	(5.0)	(12.70)		1650	1559			879	
$\left[\mathrm{ReO}\left(\mathrm{PPh}_{3}\right)(\mathrm{Hcdhp})_{2}\right] \mathrm{Cl}$	42.64	2.50	3.58	13.53		3227	1608		1235	$943{ }^{\text {b }}$	
	(42.60)	(2.66)	(3.55)	(13.50)		1661	1536			960	
$\left[\mathrm{ReO}\left(\mathrm{PPh}_{3}\right)(\mathrm{Hcdhp})_{2}\right] \mathrm{I}$	38.31	2.34	3.16			3225	1611		1232	$942^{\text {b }}$	
	(38.17)	(2.39)	(3.18)			1668	1530			959	
$\left(\mathrm{PPh}_{4}\right)\left[\mathrm{ReO}_{2}(\mathrm{cdhp})_{2}\right]$	49.37	2.86	3.30	8.49		-		1431	1255		
	(49.26)	(2.90)	(3.38)	(8.57)							
$\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{cdhp})\right]$	57.00	3.77	1.60	4.06		-		1443	1250	$503{ }^{\text {b }}$	
	(57.04)	(3.71)	(1.62)	(4.12)							
[$\mathrm{Pt}(\mathrm{bpy})(\mathrm{cdhp})$]	36.26	2.00	8.43	7.15		-		1431	1254	$510^{\text {b }}$	$392^{\text {c }}$
	(36.39)	(2.02)	(8.49)	(7.18)							
$\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{cdhp})\right]$	63.62	4.21	1.69	4.62		-		1437	1249	$522^{\text {b }}$	
	(63.57)	(4.13)	(1.81)	(4.59)							
[Pd(bpy)(cdhp)]	44.25	2.51	10.40	8.71		-		1428	1248	$515^{\text {b }}$	$411^{\text {c }}$
	(44.35)	(2.46)	(10.35)	(8.75)							
$\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right]$	60.44	4.02	3.18	7.90		3209	1606		1248	$501{ }^{\text {b }}$	
	(60.39)	(3.94)	(3.06)	(7.77)		1661	1559				
$\left[\mathrm{Ru}\left(\mathrm{AsPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right]$	55.18	3.61	2.88	6.98		3225	1610		1258	$512{ }^{\text {b }}$	
	(55.08)	(3.59)	(2.79)	(7.09)		1658	1530				
$\left[\mathrm{Rh}(\mathrm{Hcdhp})_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$	25.84	2.37	6.00	23.07		3203	1613		1239	$520{ }^{\text {b }}$	$340{ }^{\text {d }}$
	(25.9)	(2.16)	(6.04)	(22.98)		1652	1540				
$\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right] \mathrm{ClO}_{4}$	54.18	3.76	2.64	10.40		3240	1612		1236	$508{ }^{\text {b }}$	
	(54.36)	(3.55)	(2.76)	(0.49)		1650	1550				
$\left[\mathrm{Ir}(\mathrm{bpy})(\mathrm{cdhp}) \mathrm{Cl}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	30.28	2.67	$\begin{array}{r} 6.96 \\ (7.02) \end{array}$	17.85		-		1434	1247	$510^{\text {b }}$	$332{ }^{\text {d }}$
	(30.07)	(2.34)	(7.02)	(17.79)							

features have been observed for the tropolonato [32, 33], maltolato [33, 34], 3-hydroxypyridin-2-one [1, 12] and N-substituted-3-hydroxypyridin-2-one [35, 36] complexes.

In the other complexes, the stretching vibrations $\nu(\mathrm{NH}), \nu(\mathrm{C}=\mathrm{O})$ and $\nu(\mathrm{OH})$ in the free ligand are missing in the complexes, indicative of deprotonation and bidentate coordination of the ligand; these features are similar to those observed for catecholato and related catecholato complexes [24, 37-39]. Coordinated catechols typically show strong bands attributed to the ring stretch of the $\mathrm{C}-\mathrm{C}$ bond between the two oxygen donor atoms and the $\mathrm{C}-\mathrm{O}$ stretches near 1480 and $1250 \mathrm{~cm}^{-1}$, respectively [24, 38, 39]. In the halo substituted catecholato complexes the $(\mathrm{C}-\mathrm{C})$ stretching frequencies are considerably lower [40]. In the spectra of complexes, these features are supported by bands near 1435 and $1245 \mathrm{~cm}^{-1}$, attributed to $\nu(\mathrm{C}-\mathrm{C})$ and $\nu(\mathrm{C}-\mathrm{O})$ stretches, respectively.
In $\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{cdhp})_{2}\right]^{2-}$ and $\left[\mathrm{W}_{2} \mathrm{O}_{5}(\mathrm{Hcdhp})_{2}\right]$ the symmetric cis-dioxo stretches, $v_{\mathrm{s}}\left(\mathrm{MO}_{2}\right)$, are seen around $910 \mathrm{~cm}^{-1}$ as strong bands in the Raman, weaker in the IR, with asymmetric cis-dioxo stretches, $v_{\text {as }}\left(\mathrm{MO}_{2}\right)$, strong in the IR and weaker in the Raman around $880 \mathrm{~cm}^{-1}$. These complexes contain a bridging oxo-ligand [41] observed in the IR near $730 \mathrm{~cm}^{-1}$ assigned to $\nu_{\mathrm{as}}\left(\mathrm{M}_{2} \mathrm{O}\right)$. Both trans $-\left[\mathrm{UO}_{2}(\mathrm{Hcdhp})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ and trans $-\mathrm{K}_{2}\left[\mathrm{OsO}_{2}(\mathrm{cdhp})_{2}\right]$ show strong IR bands at 945 and $840 \mathrm{~cm}^{-1}$, respectively, not observable in the Raman spectra assigned to $v_{\mathrm{as}}\left(\mathrm{MO}_{2}\right)$ of trans $-\mathrm{O}=\mathrm{M}=\mathrm{O}$ [1, 2, 42]. Strong Raman bands observed at 879 and $865 \mathrm{~cm}^{-1}$, respectively, are assigned to $v_{\mathrm{s}}\left(\mathrm{MO}_{2}\right)$; in accord with trans geometry these bands are very weak in the IR [2, 24, 43]. The $\left[\mathrm{ReO}\left(\mathrm{PPh}_{3}\right)(\mathrm{Hcdhp})_{2}\right] I$ and $\left[\mathrm{ReO}\left(\mathrm{PPh}_{3}\right)(\mathrm{Hcdhp})_{2}\right] \mathrm{Cl}$ complexes show a new very strong band in both Raman $\left(959 \mathrm{~cm}^{-1}\right)$ and IR $\left(943 \mathrm{~cm}^{-1}\right)$ spectra, from $v(\mathrm{Re}=\mathrm{O})$ [40, 44]. In $[\mathrm{Pd}(\mathrm{bpy})(\mathrm{cdhp})]$, $[\mathrm{Pt}(\mathrm{bpy})(\mathrm{cdhp})]$ and $\left[\mathrm{Ir}(\mathrm{bpy})(\mathrm{cdhp}) \mathrm{Cl}_{2}\right]$, the band of $2,2^{\prime}$-biyridine at $740 \mathrm{~cm}^{-1}$ in the free ligand is shifted to higher frequencies in the complexes $\left(767 \mathrm{~cm}^{-1}\right)$ [45]. Also, bands at 440 and $520 \mathrm{~cm}^{-1}$ are assigned to $\nu(\mathrm{M}-\mathrm{O})$ and $\nu(\mathrm{M}-\mathrm{N})$ stretches, respectively [46, 47]. In $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right],\left[\mathrm{Ru}\left(\mathrm{AsPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right]$ and $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Hcdhp})\right] \mathrm{ClO}_{4}$, strong vibrations are observed near 750, 700 and $530 \mathrm{~cm}^{-1}$, attributed to PPh_{3} and AsPh_{3} [48-50]. The spectrum of $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right] \mathrm{ClO}_{4}$ exhibits two bands at $1096 \mathrm{~cm}^{-1}$ (strong) and $690 \mathrm{~cm}^{-1}$ (medium) due to $v_{3}\left(F_{2}\right)$ and $v_{4}\left(F_{2}\right)$ of uncoordinated ClO_{4}^{-}, respectively [51, 52].

3.3. Electronic spectra

The electronic spectra of $\mathrm{H}_{2} \mathrm{cdhp}$ in both nujol and ethanol show three absorption bands near 210, 240 and 305 nm [12]. The electronic spectra of the complexes in $\mathrm{H}_{2} \mathrm{O}$, DMF or DMSO in the $200-900 \mathrm{~nm}$ region contain intense bands due to ligand to metal charge transfer (LMCT) transitions and weaker bands assigned to d-d transitions [53]. Transitions below 400 nm are assigned to intra-ligand charge transfer $\left(n \rightarrow \pi^{*}\right.$ and $\pi \rightarrow \pi^{*}$).

The electronic spectra of palladium(II) and platinum(II) complexes in DMSO are indicative of square-planar geometry. In the visible region of the square-planar complexes of $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$, three spin-allowed singlet-singlet d-d transitions are predicted $[54,55]$. The ground state is 1 A 1 g and the excited states corresponding to three transitions are $1 \mathrm{~A} 2 \mathrm{~g}, 1 \mathrm{~B} 1 \mathrm{~g}$ and 1 Eg in order of increasing energy. Strong charge transfer transitions interfere and prevent observation of the expected bands.

The absorption band near 365 nm is assigned to combination of charge transfer from platinum or palladium to the π^{*} orbital of $2,2^{\prime}$-bipyridine or PPh_{3} and $\mathrm{d}-\mathrm{d}$ bands [56, 57], while the band near 480 nm is due to a combination of ligand (π) to metal charge transfer and $\mathrm{M}(\mathrm{II}) \mathrm{d}-\mathrm{d}$ bands [57].

The electronic spectra of the ruthenium(II) complexes show shoulders near 850 nm and intense transitions near $560\left({ }^{1} \mathrm{~A}_{1 \mathrm{~g}} \rightarrow{ }^{1} \mathrm{~T}_{1 \mathrm{~g}}\right), 400\left({ }^{1} \mathrm{~A}_{1 \mathrm{~g}} \rightarrow{ }^{1} \mathrm{~T}_{2 \mathrm{~g}}\right)$ and 350 (ligand $(\pi-\mathrm{d} \pi)) \mathrm{nm}$ [58-60]. These features indicate a low-spin octahedral geometry around $\mathrm{Ru}(\mathrm{II})$ [60]. Similar spectral data are reported for $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{LCl}_{2}\right]$ and $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{~L}_{2}\right]^{+}$ ($\mathrm{L}=2$-(arylazo)pyrimidines) complexes [58, 59].

The electronic spectra of the rhodium(III) complexes display bands near 600, 500 and 410 nm similar to those of other six-coordinate Rh (III) complexes, assigned to ${ }^{1} \mathrm{~A}_{1 \mathrm{~g}} \rightarrow{ }^{3} \mathrm{~T}_{1 \mathrm{~g}},{ }^{1} \mathrm{~A}_{1 \mathrm{~g}} \rightarrow{ }^{1} \mathrm{~T}_{1 \mathrm{~g}}$ and ${ }^{1} \mathrm{~A}_{1 \mathrm{~g}} \rightarrow{ }^{1} \mathrm{~T}_{2 \mathrm{~g}}$ transitions, respectively [44, 61].

The electronic spectra of $\left[\mathrm{MoO}_{2}\right]^{2+}$ (in water or ethanol) and $\left[\mathrm{WO}_{2}\right]^{2+}$ (in DMSO) display bands near 465 and 350 (shoulder) nm assigned to MLCT in octahedral geometry [62, 63].

The electronic spectrum of trans- $\left[\mathrm{UO}_{2}(\mathrm{Hcdhp})_{2}\right]$ in DMSO shows bands at 470 and 385 nm due to $\Sigma_{\mathrm{g}}{ }^{1+} \rightarrow^{2} \pi_{\mathrm{u}}$ and $n \rightarrow \pi^{*}$ charge transfer, respectively [64].

3.4. ${ }^{1} H$ NMR spectra

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{H}_{2} \mathrm{cdhp}$ in d_{6}-DMSO shows singlets at $\delta 6.88$ and 7.06 ppm arising from H_{4} and H_{6}, respectively (see scheme 2 for numbering scheme). The proton of the hydroxy group appears as a broad singlet at $\delta 11.89$ and the $\mathbf{N H}_{1}$ proton gives a singlet at $\delta 9.65 \mathrm{ppm}$. In the complexes table 2 , the proton of the hydroxy group is not observed while the resonances arising from H_{4} and H_{6} shift to lower field [65], probably due to decrease in the electron density caused by electron withdrawal of the metal in the pyridine ring coordination centers. Similar features are observed for catecholate and 1,2-dimethyl-3-hydroxypyridin-4-one complexes [1, 24, 40]. In cis-[$\left.\mathrm{W}_{2} \mathrm{O}_{5}(\mathrm{Hcdhp})_{2}\right]$, $\left[\mathrm{Ru}\left(\mathrm{AsPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right], \quad\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right] \mathrm{ClO}_{4}, \quad\left[\mathrm{Rh}(\mathrm{Hcdhp})_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \quad$ and trans- $\left[\mathrm{UO}_{2}(\mathrm{Hcdhp})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, the NH_{1} resonance shifts downfield confirming that

Table 2. Electronic and ${ }^{1} \mathrm{H}$ NMR spectral data of $\mathrm{H}_{2} \mathrm{cdhp}$ and its complexes.

		${ }^{\mathrm{I}} \mathrm{H}$ NMR Spectra (ppm)			
Compounds	Electronic spectra (nm)	$\mathrm{H}(4)$	$\mathrm{H}(6)$	$\mathrm{NH}(1)$	OH
$\mathrm{H}_{2} \mathrm{cdhp}$	$305,240,201$	6.88	7.06	9.65	11.89
$\mathrm{Cis}-\mathrm{K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{cdhp})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$465,348(\mathrm{sh})^{\mathrm{a}}$	7.07	7.26	-	-
$\mathrm{Cis}-\left[\mathrm{W}_{2} \mathrm{O}_{5}(\mathrm{Hcdhp})_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$	$462,350(\mathrm{sh})^{\mathrm{a}}$	7.06	7.23	9.70	-
$\operatorname{Trans}-\left[\mathrm{UO} \mathrm{O}_{2}(\mathrm{Hcdhp})_{2}\right]$	470,385	7.05	7.22	9.71	-
$\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{cdhp})\right]$	470,352	7.12	-b	-	-
$[\mathrm{Pt}(\mathrm{bpy})(\mathrm{cdhp})]$	477,356	7.00	7.14	-	-
$\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{cdhp})\right]$	480,371	6.95	7.13	-	-
$[\mathrm{Pd}(\mathrm{bpy})(\mathrm{cdhp})]$	473,365	6.92	7.11	-	-
$\left[\mathrm{Ru}\left(\mathrm{AsPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right]$	$850(\mathrm{sh})^{\mathrm{a}}, 555,348$	7.01	7.13	9.69	-
$\left[\mathrm{Rh}\left(\mathrm{Hcdhp}_{2}\right)_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$		7.08	7.21	9.77	-
$\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right]^{+}$	$595,510,410$	7.09	7.29	9.71	-
	$600,505,415$	6.99	7.23	9.70	-

[^1]$\mathrm{H}_{2} \mathrm{cdhp}$ is mononegative bidentate through the ketonic oxygen and the ortho hydroxy group (form B, scheme 2). For the other complexes, the resonance arising from the NH_{1} proton is not observed confirming coordination through two deprotonated hydroxy groups.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Rh}(\mathrm{Hcdhp})_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ should show the presence of fac and mer isomers since Hchhp ${ }^{-}$is an unsymmetrical bidentate ligand (carbonyl and hydroxy oxygen atoms are non-equivalent). In the fac isomer, the Hcdhp ${ }^{-}$are equivalent while in the mer they are different [44, 65]; one peak is observed for the NH_{1} at $\delta 9.71 \mathrm{ppm}$, showing the presence of pure isometrical form. Protons H_{4} and H_{6} giving only two resonances can be assigned in a similar manner [66].

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right]^{+}$shows two resonances for each proton $\left(\mathrm{NH}_{1}, \mathrm{H}_{4}\right.$ and $\left.\mathrm{H}_{6}\right)$ assigned to cis- PPh_{3} and cis-Hcdhp ${ }^{-}$configuration (scheme 3) as the metal to phosphine π-donation is more effective in the cis stereochemistry than trans [67]. The PPh_{3} protons appear as a bulky multiplet within $7.3-7.7 \mathrm{ppm}$. The X-ray crystal structure of $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{damo})_{2}\right]^{+}$showed a cis geometry [67].

In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Ru}\left(\mathrm{AsPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right]$, the bulky AsPh_{3} has an inherent disadvantage in the cis-configuration due to steric crowding. There are two competing forces; the steric crowding between $\mathrm{AsPh}_{3} \cdots \mathrm{AsPh}_{3}$ and π-back bonding between $\mathrm{t}_{2} \mathrm{Ru}$ and $\pi\left(\mathrm{AsPh}_{3}, \mathrm{Hcdhp}\right)$. The latter effect predominates in the cis-geometry [58].

3.5. Mass spectra

The mass spectra of the complexes $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{cdhp})\right]$, $[\mathrm{Pd}(\mathrm{bpy})(\mathrm{cdhp})]$, $\left[\mathrm{Rh}(\mathrm{Hcdhp})_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ and $\left[\mathrm{Ir}(\mathrm{bpy})(\mathrm{cdhp}) \mathrm{Cl}_{2}\right]$ are determined by FAB analysis. The mass spectrum of $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{cdhp})\right]$ shows fragmentation patterns corresponding to the successive degradation of the molecule. The first signal is at $m / e 864$ (Calcd 862.6), in agreement with the molecular ion of the complex, $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{cdhp})\right]^{+}$, with 6.6% abundance. The second and third signals represent the loss of cdhp and PPh_{3} fragments, indicating stepwise ligand loss to $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$with $\mathrm{m} / e 721(\mathrm{Calcd} 719.1)$ and $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)\right]^{+}$ with $m / e 458$ (Calcd 457.1), respectively [24]. The mass spectrum of $[\operatorname{Pd}(\mathrm{bpy})(\mathrm{cdhp})]$ shows a signal at $m / e 408$ (Calcd 405.9) representing the molecular ion of the complex, $[\operatorname{Pd}(b p y)(c d h p)]^{+}$, with 3.2% abundance. The spectrum exhibits one more signal at m / e 264 (Calcd 262.4), which represents $[\mathrm{Pd}(\mathrm{bpy})]^{+}$. The mass spectrum of $\left[\mathrm{Rh}(\mathrm{Hcdhp})_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$ shows a signal at $m / e 464$ corresponding to $\left[\mathrm{Rh}(\mathrm{Hcdhp})_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$with 16.2% abundance. The spectrum shows signals at 410 ,

Scheme 3. Possible cis-configurations of $\left[\mathrm{Rh}(\mathrm{Hcdhp})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$.

393 and 249 corresponding to $\left[\mathrm{Rh}(\mathrm{Hcdhp})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+} \quad[68], \quad\left[\mathrm{Rh}(\mathrm{Hcdhp})_{2}\right]^{+}$and $[\mathrm{Rh}(\mathrm{Hcdhp})]^{+}$fragments, respectively. The mass spectrum of $\left[\operatorname{Ir}(\right.$ bpy $\left.)(\mathrm{cdhp}) \mathrm{Cl}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ shows a signal at $m / e 601$ (Calcd 598.7) with 13.25% abundance. The fragmentation patterns indicate the stepwise ligand loss to $[\operatorname{Ir}(\mathrm{bpy})(\mathrm{cdhp})]^{+}(494),[\operatorname{Ir}(\mathrm{bpy})]^{+}(350)[24]$.

3.6. Thermal analysis

Thermal decompositions of $\quad\left[\operatorname{Ir}(\mathrm{bpy})(\mathrm{cdhp}) \mathrm{Cl}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}, \quad[\mathrm{Pd}(\mathrm{bpy})(\mathrm{cdhp})]$, $\left[\mathrm{Rh}(\mathrm{Hcdhp})_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Ru}\left(\mathrm{AsPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right]$ and $\left[\mathrm{ReO}\left(\mathrm{PPh}_{3}\right)(\mathrm{Hcdhp})_{2}\right] \mathrm{Cl}$ were studied using thermogravimetry (TG). The thermogram of $\left[\operatorname{Ir}(\mathrm{bpy})(\mathrm{cdhp}) \mathrm{Cl}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ shows the first step weight loss of 5.9% between 32 and $170^{\circ} \mathrm{C}$, which corresponds to the release of two mol of $\mathrm{H}_{2} \mathrm{O}$ per mol of complex (Calcd 6.0%); the relatively low temperature shows crystal lattice water [51, 61]. Another endothermic decomposition occurs between 171 and $449^{\circ} \mathrm{C}$; this weight loss is attributed to loss of Cl_{2} and $\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{NCl}$ fragments (Calcd 30.5, Found 30.3\%) [63, 69]. There are two other TG inflections in the ranges $450-509$ and $510-649^{\circ} \mathrm{C}$, from elimination of two halves of the bpy (Calcd 13.0, Found 13.0%) [61], leaving IrO_{2} representing (Calcd 37.4, Found 37.3\%). The data for $[\operatorname{Pd}(b p y)(c d h p)]$ show two TG inflections in the ranges $272-434$ and $444-498^{\circ} \mathrm{C}$. The first from release of $\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{NCl}$ (Calcd 27.5, Found 27.5\%) and bpy (Calcd 38.4, Found 38.5%) fragments, respectively [70], followed by the formation of PdO at $590^{\circ} \mathrm{C}$ (Calcd 30.2 , Found $30.3 \%)$. The thermogram of $\left[\mathrm{Rh}(\mathrm{Hcdhp})_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$ is characterized by steps at 41-110, 280-410, 411-490 and 491-643 ${ }^{\circ} \mathrm{C}$ regions. The elimination of crystal lattice water (Calcd 3.9, Found 4.0\%) [61], coordinated water, half $\mathrm{Cl}_{2}, \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{OCl}$ fragments (Calcd 36.3, Found 36.8\%) [69], $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Cl}$ species (Calcd 21.2, Found 20.9\%) and N_{2} (Calcd 6.0, Found 6.0%) leaving $\mathrm{Rh}_{2} \mathrm{O}_{3}$ residue at $670^{\circ} \mathrm{C}$ (Calcd 32.6, Found $34.1 \%)$. The TG of $\left[\mathrm{Ru}\left(\mathrm{AsPh}_{3}\right)_{2}(\mathrm{Hcdhp})_{2}\right]$ shows the first endothermic weight loss between 129 and $277^{\circ} \mathrm{C}$, corresponding to the release of four Ph groups $\left(\mathrm{C}_{24} \mathrm{H}_{20}\right)$ (Calcd 30.7, Found 30.2%). The second weight loss (Calcd 22.4, Found 21.9\%) between 278 and $347^{\circ} \mathrm{C}$ is from elimination of two $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{NCl}$ fragments. The third TG inflection in the $416-516^{\circ} \mathrm{C}$ range may arise from release of two AsPh fragments (Calcd 30.3, Found 31.6%), followed by mixed $\mathrm{Ru}_{2} \mathrm{O}_{3}-\mathrm{RuO}_{2}$ residue (21.1%). The thermogram of $\left[\mathrm{ReO}\left(\mathrm{PPh}_{3}\right)(\mathrm{Hcdhp})_{2}\right] \mathrm{Cl}$ shows an endothermic step between 185 and $325^{\circ} \mathrm{C}$, which may correspond to release of half Cl_{2} and three Ph groups $\left(\mathrm{C}_{18} \mathrm{H}_{15}\right)$ (Calcd 33.8, Found 34.0%) [69]. The second weight loss (Calcd 18.2, Found 18.5%) between 326 and $370^{\circ} \mathrm{C}$ may be attributed to elimination of P and $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{NCl}$ species. The third TG inflection lies in the $420-580^{\circ} \mathrm{C}$ range from release of O_{2} and $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{NCl}$ fragments (Calcd 18.3, Found 18.8%), followed by a residue of Re -oxide (26.7%).

3.7. Antineoplastic activity

Reliable criteria for judging the value of any anticancer drug are prolongation of life span, improving the clinical, haematological, biochemical profile and reduction in viable tumor cell count in the host $[71,72]$. It is known that available anticancer drugs inhibit the haematological and biochemical parameters (haemoglobin (Hb), red blood cell counts (RBCs) and white blood cell counts (WBCs); blood picture). The target of this study is to find a drug effective against cancer without side effects on the haematological and biochemical parameters. Schiff bases derived from substituted
o-hydroxyacetophenone-glycine (L) and their complexes $\left[\mathrm{ML}_{2}\right](\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ in DMF exhibit potent cytotoxic activity against Ehrlich ascites tumor cells [73, 74]. Also, the cytotoxicity of 2-acetylpyridine- N-substituted-thiosemicarbazones and 2-acetylpyrazine have been reported with their $\mathrm{Cu}(\mathrm{II})$ and $\mathrm{Fe}(\mathrm{II})$ complexes [73, 75].

In order to detect the influence of $\mathrm{H}_{2} \mathrm{cdhp}$ and its complexes on the haematological status of EAC-bearing mice, a comparison study was made among three groups of mice from the 14th day after inoculation. The three groups are tumor-bearing mice treated with 5 -fu (standard [28, 76]), $\mathrm{H}_{2} \mathrm{cdhp}$ and its complexes and control mice. The antitumor effect of $\mathrm{H}_{2} \mathrm{cdhp}$, cis- $\mathrm{K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{cdhp})_{2}\right]$, [$\left.\mathrm{M}(\mathrm{bpy})(\mathrm{cdhp})\right]$ and $\left[\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{cdhp})\right](\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ shows efficacy against cancer manifested by survival, activity and reduction in the tumor size; these features were not observed for the other complexes. The haematological parameters including haemoglobin (Hb), red blood cell counts (RBCs) and white blood cell counts (WBCs) data are reported in table 3. It is clear that the haematological parameters of tumor-bearing mice treated with $\mathrm{H}_{2} \mathrm{cdhp}$, cis $-\mathrm{K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{cdhp})_{2}\right]$ and $[\mathrm{Pd}(\mathrm{bpy})(\mathrm{cdhp})]$ exhibits significant improvements over those treated with the standard ($5-\mathrm{fu}$).

The haematological parameters are recorded for the tumor-bearing mice in the control group ($\mathrm{Hb} 7.8 \mathrm{~g} \mathrm{dl}^{-1}$; RBCs $4.7 \mathrm{mil} \mathrm{mm}^{-3}$; WBCs $24100 \mathrm{mil} \mathrm{mm}^{-3}$) and tumor-bearing mice treated with $5-\mathrm{fu}\left(\mathrm{Hb} 10.2 \mathrm{~g} \mathrm{dl}^{-}\right.$; RBCs $6.0 \mathrm{mil} \mathrm{mm}^{-3}$; WBCs $7600 \mathrm{mil} \mathrm{mm}^{-3}$). The haematological parameters of tumor-bearing mice treated with $\mathrm{H}_{2} \mathrm{cdhp}\left(\mathrm{Hb} \quad 10.8 \mathrm{~g} \mathrm{dl}^{-1} ;\right.$ RBCs $6.49 \mathrm{mil} \mathrm{mm}^{-3} ;$ WBCs $9840 \mathrm{mil} \mathrm{mm}^{-3}$), cis $-\mathrm{K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{cdhp})_{2}\right]\left(\mathrm{Hb} 10.7 \mathrm{~g} \mathrm{dl}^{-1}\right.$; RBCs $6.39 \mathrm{mil} \mathrm{mm}^{-3}$; WBCs $8200 \mathrm{mil} \mathrm{mm}^{-3}$) and $[\operatorname{Pd}(b p y)(c d h p)]\left(\mathrm{Hb} 11.4 \mathrm{~g} \mathrm{dl}^{-1}\right.$; RBCs $6.29 \mathrm{mil} \mathrm{mm}^{-3}$; WBCs $10150 \mathrm{mil} \mathrm{mm}^{-3}$) are near to the normal figures.

Complexes containing cyclic nitrogen atoms display significant antitumor activity [77, 78]. Also, the presence of chloro substituent in the 5-position may increase electron withdrawing from the ring and activate the metal ion to bind the tumor DNA [79].
$[\mathrm{M}(\mathrm{bpy})(\mathrm{cdhp})](\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ complexes are more effective as antitumor agents than their PPh_{3} analogues, perhaps from steric crowding of the PPh_{3}, preventing approach to the tumor DNA [80]. The antitumor activity of $[\mathrm{Pd}(\mathrm{bpy})(\mathrm{cdhp})]$ is more than that of [$\mathrm{Pt}(\mathrm{bpy})(\mathrm{cdhp})]$, as observed for efficacy and selectivity of Pd mono-dione complex towards A-427 lung cancer being higher than the Pt mono-dione [81].

To investigate the mechanism of action of $\mathrm{Pd}(\mathrm{II}), \mathrm{Pt}(\mathrm{II})$ and $\mathrm{MoO}_{2}(\mathrm{II})$ complexes in the binding of the tumor DNA, in a DNA viscosity assay, the complexes interacted

Table 3. Haematological and biochemical parameters.

Parameter Compound	Hb^{a} $\left(12-16 \mathrm{~g} \mathrm{dl}^{-1}\right)$	$\mathrm{RBCs}^{\mathrm{b}}$ $\left(4.0-6.0 \mathrm{mil} \mathrm{mm}^{-3}\right)$	$\mathrm{HCT}^{\mathrm{c}}$ $(35.0-50.0 \%)$	WBCs $^{\mathrm{d}}$ $\left(4000-11000 \mathrm{~mm}^{-3}\right)$
$\mathrm{H}_{2} \mathrm{cdhp}$	10.8	6.49	42.5	9840
$\mathrm{~K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{cdhp})_{2}\right]$	10.7	6.39	30.3	8200
$[\mathrm{Pd}(\mathrm{ppy})(\mathrm{cdhp})]$	11.4	6.29	41.9	10150
$\left[\mathrm{Pd}(\mathrm{PPh})_{2}(\mathrm{cdhp})\right]$	9.3	5.72	26.3	22400
$[\mathrm{Pt}($ bpy $)(\mathrm{cdhp})]$	8.1	4.76	21.4	13600
$\left[\mathrm{Pt}(\mathrm{PPh})_{2}(\mathrm{cdhp})\right]$	9.9	5.93	29.3	16500
$5-\mathrm{fu}(5-\mathrm{florouracil})$	10.2	6.0	29.9	7600
Control $(0.9 \% \mathrm{NaCl})$	7.8	4.72	22.2	2400

${ }^{\mathrm{a}} \mathrm{Hb}=$ hemoglobin, ${ }^{\mathrm{b}} \mathrm{RBCs}=$ red blood cell counts, ${ }^{\mathrm{c}} \mathrm{HCT}=$ hemato crate value, ${ }^{\mathrm{d}} \mathrm{WBCs}=$ white blood cell counts values in normal mice are in parentheses.
with DNA and caused viscosity greater than the normal unbound DNA. This showed that $\mathrm{Pd}(\mathrm{II}), \mathrm{Pt}(\mathrm{II})$ and $\mathrm{MoO}_{2}(\mathrm{II})$ complexes intercalate in the DNA by making the DNA coil. The $\mathrm{Pd}(\mathrm{II}), \mathrm{Pt}(\mathrm{II})$ and $\mathrm{MoO}_{2}(\mathrm{II})$ complexes attach between base pairs, extend the DNA ladder, and probably disturb the structure of DNA so it could not replicate [81]. Also, the presence of bpy in the complexes possess a multiring planar area with nitrogen bases and hence higher hydrophobicity, which would lead to intercalation more deeply into the tumor DNA [82].

The influence of solvent in cytotoxicity of $\mathrm{H}_{2} \mathrm{cdhp}$, cis $-\mathrm{K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{cdhp})_{2}\right]$, $[\mathrm{M}(\mathrm{bpy})(\mathrm{cdhp})]$ and $\left[\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{cdhp})\right](\mathrm{M}=\mathrm{Pt}, \mathrm{Pd})$ show, as expected, the water soluble $\mathrm{H}_{2} \mathrm{cdhp}$ and cis- $\mathrm{K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{cdhp})_{2}\right]$ are less kidney toxic and act on DNA of the tumor by a mechanism different from water insoluble compounds [56, 79].

Regarding the tumor size, the control group tumor size was $\left(1.0 \times 1.2 \mathrm{~mm}^{2}\right)$, reduced by 5 -fu to $\left(0.6 \times 0.7 \mathrm{~mm}^{2}\right)$ while reduced by $[\mathrm{Pd}(\mathrm{bpy})(\mathrm{cdhp})]$ to $\left(0.6 \times 0.5 \mathrm{~mm}^{2}\right)$, indicating the efficacy of the complex.

Regarding the survival time (life span) of the three groups of the above discussed bearing-mice, the group treated with 5-fu, five out of the seven mice died after one week from treatment. The group treated with $\mathrm{H}_{2} \mathrm{cdhp}$ (four out of seven mice died after two weeks), $\mathrm{K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{cdhp})_{2}\right]$ (two out of seven mice died after one week) and $[\operatorname{Pd}(b p y)(c d h p)]$ (three out of seven mice died after two weeks) while in the control group (six out of seven mice died after two weeks).

The side effects and toxicity

The side effects and toxicity of $\mathrm{H}_{2} \mathrm{cdhp}, \mathrm{K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{cdhp})_{2}\right]$ and $[\mathrm{M}(\mathrm{bpy})(\mathrm{cdhp})]$ $(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ on the mice under study have been detected. After the first week of treatment, the mice show flu-like attack and in the third week spot dropping on the hair (alopecia). Fortunately, the solid organs have not been affected.

Details of the in vivo antineoplastic screens (phases II \& III) will be published elsewhere.

Acknowledgements

I wish to thank Prof. F. Badria (Faculty of Pharmacy, Mansoura University, Egypt) for his assistance in the anti cancerous measurements and Dr A. Atwan (FRCSed) for the valuable discussion of this section.

References

[1] W.P. Griffith, S.I. Mostafa. Polyhedron, 11, 2997 (1992).
[2] S.I. Mostafa, S.A. Abd El-Maksoud. Monatsh. Chem., 129, 455 (1998).
[3] A. Pajares, J. Gianotti, G. Stettler, J. Escalada, S. Bertolotti, S. Miskoski, F. Guerri, N. Garcia. J. Photochem. Photobiol. A, 153, 101 (2002).
[4] C. Tomlin (Ed.). The Pesticide Manual, British Crop Protection Council and The Royal Society of Chemistry, UK (1994).
[5] S. Dixon, C. Wells. J. Pestic. Sci., 14, 444 (1983).
[6] H. Nakano, M. Wiesser, B. Hurt, T. Kawai, Y. Yoshida, T. Nagasawa. Eur. J. Biochem., 260, 120 (1999).
[7] M. Fukushima, H. Satake, J. Uchida, Y. Shimamoto, T. Kato, T. Takechi, H. Okabe, A. Fushioka, K. Nakano, H. Ohshimo, S. Takeda, T. Shirasaka. Int. J. Oncol., 13, 693 (1998).
[8] M. Streater, P.T. Taylor, R.C. Hider, J. Porter. J. Med. Chem., 33, 1749 (1990).
[9] B.K. Singh, C.Z. Jain, R.P. Singh. J. Indian Chem. Soc., 73, 297 (1996).
[10] H.I. Abdulla, M.F. El-Bermani. Spectrochim. Acta, 57, 2659 (2001).
[11] A. Szoecsik, L. Nagy, M. Scopelliti, A. Deak, L. Pellerito, K. Hegetschweiler. J. Organomet. Chem., 690, 2280 (2005).
[12] T.V. Vovk, O.V. Kovalchukova, B.E. Zaitsev, S.B. Strashnova, V.K. Belskii, A.I. Stash. Russ. J. Coord. Chem., 29, 291 (2003).
[13] V.B. Di Marco, G.G. Bombi, A. Tapparo. J. Chem. Soc., Dalton Trans., 2427 (1999).
[14] A.R. Johnson, B. O'Sullivan, K.N. Raymond. Inorg. Chem., 39, 2652 (2000).
[15] C. Chen, M. Wu, A. Yeh, T.Y. Tsai. Inorg. Chim. Acta, 267, 81 (1998).
[16] G. Xiao, D. Helm, R.C. Hider, P.S. Dobbin. Inorg. Chem., 34, 1268 (1995).
[17] G. Xiao, D. Helm, R.C. Hider, B.Z. Rai. J. Phys. Chem., 100, 2345 (1996).
[18] R.C. Scarrow, P.E. Riley, K. Abu-Dari, D.L. White, K.N. Raymond. Inorg. Chem., 24, 954 (1985).
[19] J.S. Malin. Inorg. Synth., 20, 61 (1980).
[20] G.F. Ciani, G. D’Alfonso, P. Romiti, A. Sironi, M. Freni. Inorg. Chim. Acta, 72, 29 (1983).
[21] N.P. Johnson, C.J. Lock, G. Wilkinson. J. Chem. Soc., 1054 (1964).
[22] R.C. Cookson, D.W. Jones. J. Chem. Soc., 1881 (1965).
[23] J.C. Bailar, H. Itatani. Inorg. Chem., 4, 1618 (1965).
[24] W.P. Griffith, S.I. Mostafa. Polyhedron, 11, 871 (1992).
[25] R.I. Kureshy, N.H. Khan, S.H. Abdi, P. Tyer. J. Mol. Cat. A, 121, 25 (1997).
[26] T.A. Stephenson, G. Wilkinson. J. Inorg. Nucl. Chem., 28, 945 (1966).
[27] K.R. Sheeji, G. Kuttan, R. Kuttan. Amala Res. Bull., 17, 73 (1997).
[28] B. Ardalan, M.D. Buscagila, P.S. Schein. Biochem. Pharmacol., 27, 2009 (1978).
[29] P. Beak. Acc. Chem. Res., 10, 186 (1977).
[30] S.I. Mostafa. Transition Met. Chem., 24, 306 (1999).
[31] S.S. Tandon, C. Chander, L.K. Thompson. Inorg. Chim. Acta, 300-302, 683 (2000).
[32] W.P. Griffith, C.A. Pumphrey, A.C. Skapski. Polyhedron, 6, 891 (1987).
[33] A.M. El-Hendawy, M.S. El-Shahawi. Polyhedron, 8, 2813 (1989).
[34] S.J. Greaves, W.P. Griffith. Polyhedron, 7, 1973 (1988).
[35] Z. Zhang, S.J. Rettig, C. Orvig. Inorg. Chem., 30, 509 (1991).
[36] W.O. Nelson, S.J. Rettig, C. Orvig. Inorg. Chem., 28, 3153 (1989).
[37] W.P. Griffith. Transition Met. Chem., 18, 250 (1993).
[38] A.M. El-Hendawy, W.P. Griffith, C.A. O’Mahoney, D.J. Williams. Polyhedron, 8, 519 (1989).
[39] W.P. Griffith, A.I. Nogueira, B.C. Parkin, R.N. Sheppard, A.J. White, D.J. Williams. J. Chem. Soc., Dalton Trans., 1775 (1995).
[40] C.F. Edwards, W.P. Griffith, A.J. White, D.J. Williams. J. Chem. Soc., Dalton Trans., 957 (1992).
[41] W.P. Griffith, C.A. Pumphrey, T.A. Rainey. J. Chem. Soc., Dalton Trans., 1125 (1986).
[42] A.M. El-Hendawy, A. El-Kourashy, M.M. Shanab. Polyhedron, 11, 523 (1992).
[43] C.F. Edwards, W.P. Griffith. Polyhedron, 10, 61 (1991).
[44] S.I. Mostafa. Transition Met. Chem., 23, 397 (1998).
[45] M.S. Islam, R.K. Roy, M.A. Miah. Synth. React. Inorg. Met.-Org. Chem., 21, 869 (1991).
[46] S.R. Khan, I.G. Jimenez, K.H. Whitmire, A.R. Khokhar. Polyhedron, 19, 983 (2000).
[47] M.S. Ali, K.H. Whitmire, T. Toyomasa, Z.H. Siddik, A.R. Khokhar. J. Inorg. Biochem., 77, 231 (1999).
[48] K. Majumder, S. Bhattacharya. Polyhedron, 18, 3669 (1999).
[49] S. Basa, I. Pal, R.J. Butcher, G. Rosair, S. Bhattacharya. J. Chem. Sci., 117, 167 (2005).
[50] R. Acharyya, F. Basuli, R.Z. Wang, T.C. Mak, S. Bhattacharya. Inorg. Chem., 43, 704 (2004).
[51] S.I. Mostafa, S.P. Perlepes, N. Hadjiliadis. Z. Naturforsch., 56b, 394 (2001).
[52] K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th Edn, Wiley, New York (1986).
[53] Y.T. Li, C.W. Jan, Y.J. Zheng, D.Z. Liao. Polyhedron, 17, 1423 (1998).
[54] A.B.P. Lever. Inorganic Electronic Spectroscopy, Elsevier, New York (1984).
[55] S.P. Perlepes, P. Jacobs, H.O. Desseyn, J.M. Tsangaris. Spectrochim. Acta, 43A, 771 (1987).
[56] V.X. Jin, J.D. Ranford. Inorg. Chim. Acta, 304, 38 (2000).
[57] D.K. Demertzi, J.R. Miller, N. Kourkoumelis, S.K. Hadjikakou, M.A. Demertzis. Polyhedron, 18, 1005 (1999).
[58] P.K. Santra, C. Sinha, W. Sheen, F. Liao, T. Lu. Polyhedron, 11, 523 (1992).
[59] P.K. Santra, C. Sinha, W. Sheen, F. Liao, T. Lu. Polyhedron, 20, 599 (2001).
[60] S.I. Mostafa, A.A. El-Asmy, M.S. El-Shahawi. Transition Met. Chem., 25, 470 (2000).
[61] S.I. Mostafa, M.M. Bekheit. Chem. Pharm. Bull. Jpn, 48, 266 (2000).
[62] S.I. Mostafa, S. Ikeda, B. Ohtani. J. Mol. Catal. A, 225, 181 (2005).
[63] M.R. Maurya, M.N. Jayaswal, V.G. Puranik, P. Chakrabarti, S. Gopinathan, C. Gopinathan. Polyhedron, 16, 3977 (1997).
[64] S.I. Mostafa, K.M. Ibrahim, N. Nawar, Z.A. Younis. Indian J. Chem., 43A, 2294 (2004).
[65] M. Calvo, A.M. Lanfredi, L. Oro, M. Pinollos, C. Tejel, A. Tiripicchio, F. Ugozzoli. Inorg. Chem., 32, 1147 (1993).
[66] S. Basu, S.M. Peng, G.H. Lee, S. Bhattacharya. Polyhedron, 24, 157 (2005).
[67] M. Moszner, T. Glowiak, M. Kubiak, J.J. Ziolkowski, G. Costa, C. Tavagnacco. Polyhedron, 16, 307 (1997).
[68] E. Saad, M. El-Shahawi, H. Saleh, A. El-Asmy. Transition Met. Chem., 31, 155 (2007).
[69] S.I. Mostafa, M.A. Kabil, E.M. Saad, A.A. El-Asmy. J. Coord. Chem., 59, 279 (2006).
[70] C.R. Perez, J.G. Platas, H. Lotter, L. Lezama, X. Solans, S. Dominguez, P.M. Marza, M.J. Rocio, M.S. Palacios, P. Gili. Inorg. Chim. Acta, 255, 139 (1997).
[71] B.D. Clarkson, J.H. Burchenal. Prog. Clin. Cancer, 1, 625 (1965).
[72] C. Oberling, M. Guerin. Adv. Cancer Res., 2, 353 (1954).
[73] W.E. Antholine, J.M. Knight, D.H. Petering. J. Med. Chem., 19, 339 (1976).
[74] O.E. Offiong, S. Martilli. Transition Met. Chem., 22, 263 (1997).
[75] I.H. Hall, K.G. Rajendram, D.X. West, A.E. Liberta. Anticancer Drugs, 4, 231 (1993).
[76] K. Yoshisue, Z. Hironaga, S. Yamaguchi, A. Yamamoto, S. Nagayama, Y. Kawaguchi. Cancer Chem. Pharm., 46, 51 (2000).
[77] A. Romerosa, P. Bergamini, V. Bertolasi, A. Canella, M. Cattabriga, R. Gavioli, S. Manas, N. Mantovani, L. Pellacani. Inorg. Chem., 43, 905 (2004).
[78] S.I. Mostafa. Transition Met. Chem., 32, 769 (2007).
[79] K. Yoshisue, H. Masuda, E. Matsushima, K. Ikeda, S. Nagayama, Y. Kawaguchi. Drug Metab. Dispos., 28, 1162 (2000).
[80] R.F. Borch, M.E. Pleasents. Proc. Natl. Acad. Sci. USA, 76, 6611 (1979).
[81] D. Lebwohl, R. Canerra. Eur. J. Cancer, 34, 1522 (1998).
[82] X. He, L. Wang, H. Chen, L. Xu, L. Ji. Polyhedron, 17, 3161 (1998).

[^0]: *Email: sihmostafa@yahoo.com

[^1]: ${ }^{\mathrm{a}}$ sh $=$ shoulder, ${ }^{\mathrm{b}}$ interference of $\mathrm{H}(6)$ with PPh_{3} proton signals.

